Program: testrisingfactorial.c Test Rising_Factorial() Exceptional values (-1)0 0.0000000000000000e+00 Rising_Factorials (n)m Rising_Factorial(n,m) (n)x...x(n+m-1) Relative Error / DBL_EPSILON ( 0)0 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)1 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)2 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)3 0.0000000000000000e+00 0.0000000000000000e+00 ( 1)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 1)1 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 1)2 2.0000000000000000e+00 2.0000000000000000e+00 0.0000000000000000e+00 ( 1)3 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 2)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 2)1 2.0000000000000000e+00 2.0000000000000000e+00 0.0000000000000000e+00 ( 2)2 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 2)3 2.4000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 ( 3)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 3)1 3.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 ( 3)2 1.2000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 ( 3)3 6.0000000000000000e+01 6.0000000000000000e+01 0.0000000000000000e+00 ( 4)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 4)1 4.0000000000000000e+00 4.0000000000000000e+00 0.0000000000000000e+00 ( 4)2 2.0000000000000000e+01 2.0000000000000000e+01 0.0000000000000000e+00 ( 4)3 1.2000000000000000e+02 1.2000000000000000e+02 0.0000000000000000e+00 ( 5)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 5)1 5.0000000000000000e+00 5.0000000000000000e+00 0.0000000000000000e+00 ( 5)2 3.0000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 ( 5)3 2.1000000000000000e+02 2.1000000000000000e+02 0.0000000000000000e+00 ( 6)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 6)1 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 6)2 4.2000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 ( 6)3 3.3600000000000000e+02 3.3600000000000000e+02 0.0000000000000000e+00 ( 7)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 7)1 7.0000000000000000e+00 7.0000000000000000e+00 0.0000000000000000e+00 ( 7)2 5.6000000000000000e+01 5.6000000000000000e+01 0.0000000000000000e+00 ( 7)3 5.0400000000000000e+02 5.0400000000000000e+02 0.0000000000000000e+00 ( 8)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 8)1 8.0000000000000000e+00 8.0000000000000000e+00 0.0000000000000000e+00 ( 8)2 7.2000000000000000e+01 7.2000000000000000e+01 0.0000000000000000e+00 ( 8)3 7.2000000000000000e+02 7.2000000000000000e+02 0.0000000000000000e+00 ( 9)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 9)1 9.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 ( 9)2 9.0000000000000000e+01 9.0000000000000000e+01 0.0000000000000000e+00 ( 9)3 9.9000000000000000e+02 9.9000000000000000e+02 0.0000000000000000e+00 ( 10)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 10)1 1.0000000000000000e+01 1.0000000000000000e+01 0.0000000000000000e+00 ( 10)2 1.1000000000000000e+02 1.1000000000000000e+02 0.0000000000000000e+00 ( 10)3 1.3200000000000000e+03 1.3200000000000000e+03 0.0000000000000000e+00 Large Factorials (n)m Rising_Factorial(n,m) (n)x...x(n+m-1) Relative Error / DBL_EPSILON ( 171)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 171)1 1.7100000000000000e+02 1.7100000000000000e+02 0.0000000000000000e+00 ( 171)2 2.9412000000000000e+04 2.9412000000000000e+04 0.0000000000000000e+00 ( 171)3 5.0882760000000000e+06 5.0882760000000000e+06 0.0000000000000000e+00 ( 172)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 172)1 1.7200000000000000e+02 1.7200000000000000e+02 0.0000000000000000e+00 ( 172)2 2.9756000000000000e+04 2.9756000000000000e+04 0.0000000000000000e+00 ( 172)3 5.1775440000000000e+06 5.1775440000000000e+06 0.0000000000000000e+00 Test xRising_Factorial() Exceptional values (-1)0 0.0000000000000000e+00 xRising_Factorials (n)m xRising_Factorial(n,m) (n)x...x(n+m-1) Relative Error / DBL_EPSILON ( 0)0 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)1 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)2 0.0000000000000000e+00 0.0000000000000000e+00 ( 0)3 0.0000000000000000e+00 0.0000000000000000e+00 ( 1)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 1)1 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 1)2 2.0000000000000000e+00 2.0000000000000000e+00 0.0000000000000000e+00 ( 1)3 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 2)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 2)1 2.0000000000000000e+00 2.0000000000000000e+00 0.0000000000000000e+00 ( 2)2 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 2)3 2.4000000000000000e+01 2.4000000000000000e+01 0.0000000000000000e+00 ( 3)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 3)1 3.0000000000000000e+00 3.0000000000000000e+00 0.0000000000000000e+00 ( 3)2 1.2000000000000000e+01 1.2000000000000000e+01 0.0000000000000000e+00 ( 3)3 6.0000000000000000e+01 6.0000000000000000e+01 0.0000000000000000e+00 ( 4)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 4)1 4.0000000000000000e+00 4.0000000000000000e+00 0.0000000000000000e+00 ( 4)2 2.0000000000000000e+01 2.0000000000000000e+01 0.0000000000000000e+00 ( 4)3 1.2000000000000000e+02 1.2000000000000000e+02 0.0000000000000000e+00 ( 5)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 5)1 5.0000000000000000e+00 5.0000000000000000e+00 0.0000000000000000e+00 ( 5)2 3.0000000000000000e+01 3.0000000000000000e+01 0.0000000000000000e+00 ( 5)3 2.1000000000000000e+02 2.1000000000000000e+02 0.0000000000000000e+00 ( 6)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 6)1 6.0000000000000000e+00 6.0000000000000000e+00 0.0000000000000000e+00 ( 6)2 4.2000000000000000e+01 4.2000000000000000e+01 0.0000000000000000e+00 ( 6)3 3.3600000000000000e+02 3.3600000000000000e+02 0.0000000000000000e+00 ( 7)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 7)1 7.0000000000000000e+00 7.0000000000000000e+00 0.0000000000000000e+00 ( 7)2 5.6000000000000000e+01 5.6000000000000000e+01 0.0000000000000000e+00 ( 7)3 5.0400000000000000e+02 5.0400000000000000e+02 0.0000000000000000e+00 ( 8)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 8)1 8.0000000000000000e+00 8.0000000000000000e+00 0.0000000000000000e+00 ( 8)2 7.2000000000000000e+01 7.2000000000000000e+01 0.0000000000000000e+00 ( 8)3 7.2000000000000000e+02 7.2000000000000000e+02 0.0000000000000000e+00 ( 9)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 9)1 9.0000000000000000e+00 9.0000000000000000e+00 0.0000000000000000e+00 ( 9)2 9.0000000000000000e+01 9.0000000000000000e+01 0.0000000000000000e+00 ( 9)3 9.9000000000000000e+02 9.9000000000000000e+02 0.0000000000000000e+00 ( 10)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 10)1 1.0000000000000000e+01 1.0000000000000000e+01 0.0000000000000000e+00 ( 10)2 1.1000000000000000e+02 1.1000000000000000e+02 0.0000000000000000e+00 ( 10)3 1.3200000000000000e+03 1.3200000000000000e+03 0.0000000000000000e+00 Large Factorials (n)m xRising_Factorial(n,m) (n)x...x(n+m-1) Relative Error / DBL_EPSILON ( 171)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 171)1 1.7100000000000000e+02 1.7100000000000000e+02 0.0000000000000000e+00 ( 171)2 2.9412000000000000e+04 2.9412000000000000e+04 0.0000000000000000e+00 ( 171)3 5.0882760000000000e+06 5.0882760000000000e+06 0.0000000000000000e+00 ( 172)0 1.0000000000000000e+00 1.0000000000000000e+00 0.0000000000000000e+00 ( 172)1 1.7200000000000000e+02 1.7200000000000000e+02 0.0000000000000000e+00 ( 172)2 2.9756000000000000e+04 2.9756000000000000e+04 0.0000000000000000e+00 ( 172)3 5.1775440000000000e+06 5.1775440000000000e+06 0.0000000000000000e+00